
Text2Movie: Application of Text-To-Video
Synthesis with Audio for Movie Generation

Batch Size of 3

Tyler Chan

Rensselaer Polytechnic Institute
Troy, NY

Alan Zhang

Rensselaer Polytechnic Institute
Troy, NY

Zhi Zheng

Rensselaer Polytechnic Institute
Troy, NY

Abstract—With the rise of multi-modal implementation, more
artistic interpretation of ideas have been realized through text-
to-image synthesis. Especially during the first lecture, where we
see a story of a goat going from rags to riches selling goat cheese.
Then throughout most of our class, we have explored storytelling
from a single block of text. However, by utilizing storytelling, we
can develop a more concrete story through a playwright’s script.
This allows us to expand storytelling to a movie. We refer to a
movie as a visual and auditory experience.

We introduce an end to end framework, where by providing
a description for a story, we are able to generate an entire script
and movie that corresponds with that script.

I. INTRODUCTION/OVERVIEW

What did you ultimately create for your final project?
Describe the “big picture” of your project clearly and
specify how it flows from the generative modeling
concepts we discussed in the course. Include a few
frames of the final result to illustrate key achievements.
You can think of this as an image-based version of the
storyboard you made for the progress report.

A. Concept of the Project

As provided in our abstract, our motivation for our project is
to explore the idea of imagination through a multidimensional
lens instead of a single lens. Throughout most of the first half
of the semester, we have delved deep into interpretation of
generative art. With this in mind, we are looking to develop
an entire story focused on a small, obscure moment. In order
to accomplish this, we want to expand this moment into an
entire storyboard of events and what happens throughout, like
a movie script of a scene.

Thus, what our plan for the project is: from a text, generate a
script, and then utilizing this script, add on multiple short-form
video and audio clips. Every script will generally have multiple
scenes. These scene will include a caption and dialogue. The
caption describes how the scene is acted out and the dialogue
can include any auditory noises or dialogue from a particular
character. For example, a possible scene for ”Walter White
baking bread” would contain:

Caption: "Walter White inside of his bakery"
Dialogue:

- Walter White: "My name is Walter Hartwell
White and this is my bakery"

The opening shot represents the caption, which is the event
in which the action takes place. Then the dialogue is what
a particular character would say during this event. Finally, a
video of the same length of the dialogue will be generated and
fitted together.

Of course, since we are planning to make a long-form video,
we will include multiple different scenes inside of one script.
For example:

Script:
- Scene 1:

Caption: "Walter White inside of his
bakery"

Dialogue:
- Walter White: "My name is Walter

Hartwell White and this is my bakery
"

- Scene 2:
Caption: "Walter White opening an oven"
Dialogue:
- Walter White: "All of my ingredients

are fresh"

Finally, all of the scenes will be compiled together to
make a long-form video that is directly from the storyboard,
practically shot like a movie. This allows us to formulate a
single text based response to an entire video that encompasses
that general prompt. A more descriptive definition of what
the script is, and how our process is done is defined in the
intermediate steps.

II. RELATED WORK

How is your project related to specific topics/algo-
rithms/homeworks in the course? What other related
work is there from the technical or artistic literature
that is related to your idea, such as research papers
or examples of similar effects from social media? In
the case of research papers, use the proper form for
citations.



Fig. 1: Project inspiration: ”I asked ai to make a Walter White bakery commercial” by Kneeco [20]

A. Inspiration

Due to RunwayML’s Gen-1 and Gen-2 algorithms, many
creative endeavors have been partaken in trying to develop a
story with familiar characters. In addition to that, ElevenLabs
provide trained models of celebrities and many popular
characters. Due to that, many creative minds have used this
to create AI generated videos of characters in shows doing
various tasks that are not typical. In our example, we took
inspiration from Kneeco’s ”I asked ai to make a Walter White
bakery commercial” Fig. 1 (Youtube Link). According to
the authors description, the script is most likely written by
the author, and the video is generated through RunWayML’s
Gen-1 or Gen-2 to create a text-to-video result. Moreover,
ElevenLabs was used to replicate the voice of Walter White
from Breaking Bad.

We plan to make this an effortless production by creating a
video, in which we call a movie, by removing the steps of in-
between editing and use of various services. The user should
be able to enter a text prompt and directly obtain a video as
the final result.

B. Text-To-Video Generation

An example of an end to end text to video generation is
1) Text-To-Image: We are planning to use Stable Diffusion

(SD) [3] to generate images and we have talked about Stable
Diffusion in class before: it is a latent diffusion model that
is conditioned on text prompts. This is related to the topics
of using word embeddings, tokens, transformers, attention,
and CLIP that we discussed in class for the text prompt.
Diffusion models was discussed in class, including the user of
convolutional neural networks, autoencoders and u-nets. Stable

diffusion have been heavily used to generate images, and there
are an abundant of fine tuned models to generate images for
specific cases, such as cartoon characters.

2) Image-To-Video: The topic of video generation was not
covered explicitly in class. Only recently did high quality and
temporally consistent generation of videos become an active
area of research. However we can still relate video generation
to some topics that we covered in class: Stable Video Diffusion
(SVD) [15] uses Stable Diffusion to generate the next few
frames conditioned on a starting image. Some related models
include Text2Video-Zero [2], which is a text to video model
we also explored which relies on traversing the latent space in
a specific way on a pretrained image diffusion model rather
than performing training on video data.

C. Text-To-Speech Generation

1) Text-To-Speech (TTS): For the TTS, we are planning on
using a VITS [10] model (and additionally TorToiSeTTS [22])
to generate voice-over for the movie. It uses a conditional
VAE for inference of the spectrogram. In class we have talked
about conditional VAEs for image generation, but not for audio
generation. The model also uses normalizing flow models and
GANs (adversarial training) which were talked in class. The
demo website [11] has examples of generating speech that is
trained on samples from a human speaker. The TTS will be
used to generate realistic human sounding voice for a general
speaker.

2) Speech-To-Speech: For Speech-To-Speech (known for-
mally as Voice Conversion), we are planning on using So-
VITS-SVC to clone a voice onto some target speech. This
model uses VITS as part of its architecture and nothing else
from class. An inspiration for using this technology would be

https://www.youtube.com/watch?v=dgkZTHHom94


the popular meme videos on Youtube of US presidents playing
Minecraft and other related videos [21] (Youtube Link).

D. LLMs

The LLM that we are using (GPT-4 [6]) can generate
text conditioned on a initial text prompt. Some topics that
we covered in class that are related to LLMs are: Word
Embeddings, Tokens, Transformers, and Attention. Similar
language models that we have worked with include Llama-
2 [9]. Llama-2 is open source and many libraries exist for fine
tuning the model, which we have also done in the past to train
it on novel data.

III. DATA COLLECTION

Where did you collect your raw image/video/audio
data from? What are the key specifications (resolution,
frame rate, number of examples, etc.)? What data did
you have to recollect/end up not using and why? Are
there any ethical issues pertaining to the data you used?

Based on our framework:
• LLM: Since we are using a very complicated and well

tuned model (GPT 4), we will not be fine tuning the
model on any additional data. Moreover, with our group’s
current capability of technology, we are unable to fine-
tune a LLM as good as GPT 4. In addition, we tested
writing a script with captions and the output result is
exactly in the format that we requested, thus we would
not have any problems generating our script with GPT 4.

• Text-to-Speech: We plan to train specific voice actors for
to speak the dialogue text. The data that we will collect
would be a compendium of audio clips of the voice actor
speaking with little to no background noise. For this,
we collected some of our lecture videos from Professor
Radke’s Youtube channel and we extract the audio from
the lecture videos to use for training. The tool that we are
using to clone voices is meant meant for ”Singing Voice
Conversion” which keeps the tones and intonations of the
original speech which is great for Singing, but it may not
work to clone a voice in its entirety. This can produce
voices that might sound different to the target voice but
it allows us to clone without the need to caption all the
training data manually.

Ethical issues can arise from collecting data to train a model
in the likeness of someone else, especially without their
permission. A problem with this is when these models are used
for malicious means, for example: A highly respected doctor
recommends a health supplement in the advertisement of the
product. But the doctor never endorsed their product and the
video and the voice of the doctor were generated from these
models.

IV. TECHNICAL APPROACH

Give a block/flow diagram for each main algorithm
in your project, and details on each of the sub-blocks
(e.g., names/references for pretrained standard models,
network architecture and loss functions for models you
trained yourself ). This part should be as detailed/-
mathematical as you can make it (suppose you were
writing it so that someone else could re-implement
your algorithm from your description). Note that you
don’t need to re-explain algorithms verbatim from the
class in your final report, but you do need to be
specific about nonstandard choices you made (e.g.,
cost functions, parameter values, etc.). Remember to
be particularly detailed about the project elements that
involved hand-written code to demonstrate that you
didn’t just hook together various Github repos. This
is especially important at the 6000-level of the class.
Discuss how long it took you to train any networks that
weren’t off the shelf, and on what kind of machine.

A. TTS

1) VITS: Conditional Variational Autoencoder with Ad-
versarial Learning for End-to-End Text-to-Speech [10] is a
framework for making realistic sounding human speech from
text. This paper is trying to solve an issue with TTS methods
at the time; two step pipelines were of higher quality but
sequential process means it can’t be parallelized and is slow;
one step pipelines were faster but could not reach the same
quality as the two step pipelines. VITS aims to solve this with
parallel end-to-end pipeline for generating realistic speech that
uses variational inference augmented with normalizing flows
and an adversarial training process. In addition to this, the
model also includes a stochastic duration predictor to generate
multiple variations of rhythms for the input text allowing for
a more realistic speech pattern.

Fig. 2: VITS training procedure

The VAE part of the is the left part of the model in fig. 2
where there is a Posterior Encoder that takes a spectrogram
(xlin) of the training audio and transforms it to a lower

https://www.youtube.com/watch?v=qYF0jhwrzxA


Fig. 3: VITS inference procedure

dimensional latent space and a decoder to take the latent vector
(z) and try and retrieve the original waveform.

The right side of the model in fig. 2 is the part that is
trying to estimate an alignment between the speech and the
input text using Monotonic Alignment Search (MAS). MAS
was introduced in Glow-TTS [12] and tries to maximize the
likelihood of the input speech latent. The model also has prior
distributions on several components (green blocks in Fig. 2)
that are changed as more data is input into the model. The flow
model is used here to allow a invertible transformation of a
simple distribution to a complex distribution. The invertible
part is important for the model at inference. In addition, the
durations of the speech vectors are passed to a Stochastic
Duration Predictor for the realistic rhythms mentioned before.
Lastly, the entire model is trained with an adversarial network
(not shown in Fig. 2) that tries to discriminate the output of
the decoder.

The inference model in fig. 3 has a few changes to the
training model:

1) The encoder is discarded because speech is not an input
to the inference model.

2) The alignment is now used to predict a function of the
latent vector from input text and the durations generated
by the Stochastic Duration Predictor.

3) The Normalizing Flow model is inverted to obtain the
latent vector that is then passed to the decoder for the
final waveform.

2) So-VITS-SVC: SoftVC VITS Singing Voice Conversion
aims to clone another persons voice on top of an input of a
source audio. It aims to keep the tones and intonation while
still making the voice sound as close to the cloned voice as
possible. This project does not have a paper associated with
it and thus we are unsure of what exactly their architecture
they have for their training and inference process. However,
we can make some educated guesses on what is actually
happening by looking that tools they used and their statement
on the model: ”The singing voice conversion model uses
SoftVC content encoder to extract speech features from the
source audio. These feature vectors are directly fed into VITS
without the need for conversion to a text-based intermediate

representation. As a result, the pitch and intonations of the
original audio are preserved. Meanwhile, the vocoder was
replaced with NSF HiFiGAN to solve the problem of sound
interruption.” [13]

They used SoftVC [14] to extract these ”feature vectors”
from the source audio which aims to use distributions of
these ”features” instead of discrete features. Using these soft
features, the output audio becomes more natural compared to
using the discrete features.

In the repo, they stated that these features are then fed
directly into a VITS model, avoiding the Text Encoder part of
the model and preserves the original intonations of the audio
(Fig. 2).

Another change would is to the ”vocoder” which in this
repo describes the ”decoder” in the VITS model (Fig. 2)

3) TorToiSeTTS: TorToiSeTTS [22] is composed of the
following parts: first, an autoregressive decoder which predicts
a probability distribution of speech tokens. Then a contrastive
model, CVLP, is used to rank the outputs from the autoregres-
sive decoder, producing a correlation score for each speech
candidate and the text. The top k speech candidates are then
chosed and a denoising diffusion probability model (DDPM) is
used to convert this into a MEL speech spectrogram. Reptition
penalty and temperature can be configured during the diffusion
process to obtain variations in the output waveform.

Fig. 4: The Tortoise TTS design diagram, showing how input
text is transformed into an output waveform.

We used a significantly optimized version of Tortoise by
using api fast.py [23] that performs around 5 to 10 times
faster than the original version. This is due to a number of
optimizations, including using KV cache to speed up sampling,
using half precision whenever possible, and a better diffusion
sampling method (dpm++2m).

B. LLM
OpenAI does not publish the technical details of their recent

GPT models (GPT-3.5 and GPT-4) however, we can draw
parallels to the GPT-2 [7] models that they have published
the technical details on. The GPT [8] architecture uses a
Transformer based architecture that takes in tokens and tries
to predict the tokens that should follow the input.

C. Stable Video Diffusion
The architecture is similar to an image diffusion model,

and a pretrained image diffusion model can be used to create



the video diffusion model. Stable Video Diffusion [15] says
that they use the same architecture from an earlier model [16].
This earlier model uses a combination of spacial and temporal
convolution and attention layers where there is a temporal
layer is inserted between the spacial layers that existed in the
original image diffusion model and can be seen in Fig. 5.

Fig. 5: Temporal and Spatial Layers in SVD Model

The network is then trained by freezing the spacial layers
and only optimizing the temporal layers. Additional fine
tuning with video data is performed on all layers to remove
artifacts, such as flickering. Note that while video content
used for initial training is at a low resolution, high resolution
video is used for this fine tuning stage.

The WebVid-10M dataset is used for training. A curation
process to filter out only desirable videos from all of the
data was a crucial step for generating high quality results.
IN particular, any video containing jump cuts is detected and
either used as separate video sequences or not used.

The video generation process takes in a CLIP image embed-
ding of the input image, and first generates sparse keyframes
with large semantic changes in latent space, performs inter-
polation between those keyframes, then decodes it into pixel
space. Although there is no strict limit to how long the video
generated can be, available memory poses a barrier to longer
videos, and the attention network only attends to at most the
last 8 frames. SVD currently comes in a 14 frame and 25
frame version, with us using the 25 frame version.

Additionally, the guidance scale for image to video is
increased linearly over the duration of each video clip gen-
eration, as the researchers have found that this leads to fewer
artifacts and inconsistencies. Camera tracking LoRAs were
also trained, specifically on horizontal panning, zooming and
static perspectives.

D. Pipeline

Our pipeline for generating the scenes includes several
different projects: an LLM [6], SD [3], SVD [15], VITS
[10]/TorToiSeTTS [22], and So-VITS-SVC [13].

1) User creates a text prompt describing for a scene or
event.

2) The LLM generates the dialogue and caption describing
each scene.

3) Each caption is passed to SD to a image of what the
caption is describing.

4) Each image is passed to SVD to get a video clip of what
the caption is describing.

5) Each dialogue is passed to VITS or TorToiSeTTS to
generate a voice-over.

6) (OPTIONAL) Each voice-over is passed to So-VITS-
SVC to apply a cloned voice onto the voice-over.

7) Each video and voice-over is combined to make a final
movie.

For clarification, refer to the flowchart of our pipeline:
”Fig. 6”.

V. INTERMEDIATE RESULTS

Include some “making of” information and images that
illustrate steps in creating the various elements of your
project. That is, don’t just show the final result, show
some of the underlying pieces you needed to create
the effect (e.g., guidance images for ControlNet, input
images for textual inversion, prompts for Stable Dif-
fusion, etc.). Highlight both strengths of your current
algorithms and weaknesses that you didn’t have time
to fix or had to find a quick solution to. I would like
to see lots of images and discussion here!

A. LLM

Our intermediate steps are according to our flowchart of the
pipeline: Figure 3. First, we take a user input as a text prompt,
this prompt is sent to a LLM that generates a story based on
that prompt. The LLM receives an example of the prompt, and
we prompt engineer the LLM to create a response that would
follow our format for the generation of a movie. The example
we use is as described:

{
"characters": [

{"name": "Radke"}
],
"style": "realistic",
"script": [

{"caption": "A sheep looking at cheese
in a supermarket.",
"dialogue": [

{"character": "Radke", "text": "In
the mist-enshrouded hills of an
ancient land, there lies a
mystery as old as time itself.
Behold the enigmatic sheep,
creatures shrouded in the lore
and legend of yesteryears."}

]
}

]
}



Text Prompt

LLM

Captions Dialogue

Text2Image (SD)LoRA, ControlNet, etc. Text2Speech (VITS/TorToiSeTTS)

Image2Video (SVD) Speech2Speech (So-VITS-SVC)

Final Movie

Fig. 6: Flowchart of Pipeline

Fig. 7: Examples for Text-To-Video synthesis

Then we send the system as a role where they are a TV show
writer, and that they have to generate the ”prompt” by filling
in a .json file, the style described in the example. In our earlier
cases, we generated scripts that were too long, it had around
20 captions and 5 dialogue pieces per caption. This took up
too much memory, and due to a limited amount of time for
testing, we engineered the prompt to keep the script around
with 4 captions and a maximum of 2 characters per caption
speaking. This prevented us from running out of memory and
produced quick movies as results.

Once the LLM has produced a script for us to use, we
take the script and derive it into a list of generations. This
contains the character, their dialogue, and their caption. Each
item in the list will be sent to various algorithms for their

generation. From now, when we iterate through the list, it will
take the ith iteration and generate according to that iteration.
For instance, if we have captions that are 3 long, and for each
caption we have a 2 dialogues. In the 3rd list sequence, it
is the 1st dialogue of the 2nd caption, in which includes a
character speaking that dialogue. Here is a visual example:

1st: [character: John, caption: "There is
a ghost in the hallway", dialogue:
"I am scared of phantoms"]
2nd: [character: Ghost, caption: "There
is a ghost in the hallway",
dialogue: "Boo!"]
3rd: [character: John, caption: "A



Fig. 8: Result for an entire script of scenes including the captions

ghost appears next to John",
dialogue: "Ahhhh!"]

Although we generated impressive results with no issues on
the end of LLM, we are using credits through OpenAI’s GPT-
4. This is a paid service and thus not possible to be provided in
a large capacity. We have tried other LLMs, including Meta’s
Llama 2 [19], it did not work as well as GPT-4 in generating
a cohesive example according to the layout. Therefore, we left
it out as a future budget option that we can incorporate.

B. Text2Speech

First, we have the audio generation, this takes in the
dialogue at the ith iteration in the list. Next, this dialogue
is sent to a text-to-speech (tts) module, that would generate
a voice sample. According to different implementations of
our current pipeline, these results would go two ways. Both
include various steps and have their own respective advantage.
Most of our results use TorToiSeTTS, if you hear that a result
includes Prof. Radke’s voice, it is utilizing So-VITS-SVC.

Before any inferencing, we have an initial step before
generating any TTS samples. This step is to take the list of
characters in the dialogue, and assign various voice actors to
the specific character.

1) TorToiSeTTS: This model currently supports than 7
characters, and will repeat assignment if exceeding 7 (if the
prompt determines so). Once the dialogue with that specific
character is chosen, the TTS is enabled with inference on.
The dialogue at the ith iteration in the list is then sent into
the model for inference and results in an audio file. The API
we use for TorToiSeTTS is without diffusion, this makes the
inference much faster. This API is developed in the fast api
code in the author’s repository.



This is saved in an audio file and accessed later in order to
clear the cache and save memory for following models.

2) VITS: If we are not using TorToiSeTTS for our TTS
samples, VITS is used instead. The only models available to
us are the pretrained models used in their demo [11]. A similar
selection of characters will happen with the available VITS
models that in present in the models folder. The dialogue at
the ith iteration in the list is then sent into the model for
inference and results in an audio file. Similar to the tortoise
implementation.

3) So-VITS-SVC: If the user wants to have one of the
characters to be one of the voices that are cloned, then the
audio files generated by VITS is passed into the So-VITS-SVC
module and a audio file with the cloned voice is generated and
saved. The only model that we have trained currently is the one
of Professor Radke, and we found that the male VITS model
with So-VITS-SVC performs better than using TorToiSeTTS
with So-VITS-SVC.

C. Text2Video

Next, we have the video generation, this takes the captions
at the ith iteration in the list. Next, this caption is sent to a
text-to-image synthesizer, which will generate an image based

on the content of the captions. The text is sent to a text-to-
image synthesizer, in this case we use Stable Diffusion [3].
Here, the caption is sent to generate an image:

Then, we take that single image, and send it to an image-to-
video synthesizer, in this case we use Stable Diffusion Video
[15] (SVD) to create multiple frames of images from the
original image generated by the text-to-image model. With
the previous model, we create a text-to-video framework. We
include multiple examples of this in ”Fig. 7”.

Since SVD can only generate a maximum of 25 frames, we
presume that the audio given at a particular dialogue will most
likely not reach 25 frames. Therefore, we created a loop that
would take the last frame of the generation, which is an image.
Then we would send that to SVD to create a video again. This
step continues until the audio ends, and the amount of frames it
takes for the audio to end is calculated through the sampling
ratio of our audio sample. This step has led to some good
results, but had some weird results as well. We will explain
in more detail in our final frames.

D. Scene: Synthesis of Video & Audio

Finally, all of the frames and audio are combined to create a
scene. After all of the scenes are created, the music, if needed,
is added to the end. The output includes all of the scenes
rendered as a .mp4 file. ”Fig. 8” includes an example of the
result including the captions.

VI. FINAL FRAMES

Show some sequences of final outputs/images where
you feel that the algorithms worked particularly well.
Also, show some outputs/images that didn’t work so
well and critically assess what happened.



A. Prompt: make a commercial where Dwayne ”the rock”
Johnson sells orange juice

In our current example we have the first SVD generation of
the rock moving forward in the grocery store. However, in the
second generation by taking the frame of the last frame of the
initial frames, he started to walk backwards. This is due to the
fact that between those generations, we do not keep any spatial
or temporal consistency, and thus, the rock, randomly decided
to walk backwards. On the other hand, there are instances
where this works well.

We presume that it is able to keep the walking animation
because it is easier to keep a temporal consistency when the
next action is easily predictable: walking forward. Whereas, in
our first example, it is hard to tell if the rock is moving forward
or backward by just looking at one image. We perceive that a
person is walking forward in that instance.

B. Prompt: gordon ramsay going to the hospital after eating
too many burgers

If we look at the individual frames, many images kept spa-
tial and temporal consistency. It appears that Gordon Ramsay
eats a burger, but it cannot animate the act of eating that burger.
In the final scene, it was able to correctly animate his hand
moving. These examples did not include any additional frames,
and held temporal consistency almost throughout. Therefore,
it held good results for most of the generation.

Additionally, a prevalent issue arises because we do not have
the genders of the characters in the script so a female voice
actor can be selected when generating the speech for a male
character. In this example, a female voice actor was chosen for
Gordon Ramsey This video and other examples can be found
in the class Box or the Github repo since we are unable to
play videos in PDF files.



C. Prompt: Italian mobsters start an advertisement for a pizza
company

In this example, we can see that Stable Diffusion was able
to generate stereotypical mobsters for the first two scenes
but once the captions stopped mentioning that the characters
were mobsters, normal looking characters were generated
instead. This issue of character (temporal) consistency between
difference scenes can be somewhat fixed by making sure that
the captions always have the relevant context for the prompt.

VII. DISCUSSION AND FURTHER WORK

If you had more time to work on this project, what
else could you do to make it better? Now that you
completed the project, what would you have done
differently (e.g., in terms of the original data you
collected or networks you tried)? What are some
extensions based on concepts from the course that
could apply to your project?

A. Further Work

In our project, the method to generate a movie form a text is
an end to end process that is completely automated. However,
we added a manual script to include music in the video, this
required the user to add the music file in the repository or
use the one we already have. Then, they would have to add
this as a command to include in the final video. We have not
experimented much with this idea, but I think it would add an
extension to the project that would be interesting.

Another idea that we have no delved too deep in, is fine-
tuning a model that would generate in a particular style

or stay consistent with the previously generated style. For
instance, we found that one model really liked to generate
cartoons, and then add one realistic image. In order to alleviate
this, we added a custom parameter that included the style to
stable diffusion. This is a novel approach since many images
generated with a particular style maintain that style. However,
as we tried this method with ”realism” as a style tag, it still
generated cartoon images through stable diffusion. Therefore,
this was an imperative issue that we would investigate more
into, if we had more time for the project.

Additionally, to that similar issue, we had experimented
with many different stable diffusion versions, styles, and
even the newest stable diffusion release for our text-to-image
synthesis. Before concluding that the newest, fine-tuned
Stable Diffusion XL, had the best results out of all the other
models. This could have definitely saved us more time in
inferencing results, since we had tested many different results
over time and different model versions.

As we described under intermediate frames, we would like
to experiment more with SVD generating more temporal and
spatial frames in the future generations. However, this would
involve delving into the model in order to keep future images
with that same consistency. Therefore, we kept our current
solution as of now, and may look into this as further work.

Finally, we need more time to experiment with So-VITS-
SVC to work with the TorToiSeTTS model. In our initial
result, when we used speech-to-speech, it dampened the voice
and sometimes it even cuts out the audio after inference.
This is an error that our group has not figured out yet after
various trials and tests. We believe that it might be due to
the hyperparameters that it uses, since it is defaulted to VITS.
Perhaps it might be better to find the optimal hyperparameters
for TorToiSeTTS.

B. Extensions

We mentioned previously that we would experiment and
attempt to extent AI generated music to add as a mood to the
scene. This would completely make our results automated,
including music. In class, we mentioned various music
generators, for instance, a GAN-inspired music generator:
GANSynth [18]. This would be an improve to our current
pipeline and could be an effective extension mentioned in
class. Yet, this does introduce more problems that we would
have to assume that the LLM can generate. For instance,
we know that a comedic sketch will include lighthearted
jingles, but that mood is not always consistent with what
music it needs to be generated. If we are using a particular
LLM to predict what it should generate, it is another layer of
abstraction that could lead to issues in the future. Whereas,
by manually selecting the music, we are able to derive what
the mood or tone should be.

Moreover, in our original concept, we just applied stable
diffusion for a simple image. We can include multi-model



support and support for plugins for other models like Dream-
Booth [4] or ControlNet [5]. In our personal homeworks, we
have utilized ControlNet and LoRA [17] with Stable Diffusion
in order to generate a particular character in the scene doing
various tasks. We can possibly apply that to our project, and
create a more descriptive storytelling method by having that
particular character on those scenes. Furthermore, Algoleafic
Art, created a storytelling module that created specific images
of characters that are temporally consistent between scenes.
Therefore, we can apply that logic and try to keep our scenes
consistent between one character.

REFERENCES

[1] L. Khachatryan et al., Text2Video-Zero: Text-to-Image Diffusion Models
are Zero-Shot Video Generators. 2023. Reference Link

[2] Picsart-AI-Research (2023) Text2Video-Zero [Source Code]. Github
Link

[3] R. Rombach et al., High-Resolution Image Synthesis with Latent Dif-
fusion Models. 2022. Reference Link

[4] N. Ruiz et al., DreamBooth: Fine Tuning Text-to-Image Diffusion
Models for Subject-Driven Generation. 2023. Reference Link

[5] Zhang, Lvmin, et al., Adding Conditional Control to Text-to-Image
Diffusion Models. 2023. Reference Link

[6] OpenAI, GPT-4 Technical Report. 2023. Reference Link
[7] A. Radford et al., Language Models are Unsupervised Multitask Learn-

ers. 2019. Reference Link
[8] A. Radford et al., Improving Language Understanding by Generative

Pre-Training. 2018. Reference Link
[9] H. Touvron, T. Scialom et al., Llama 2: Open Foundation and Fine-

Tuned Chat Models. 2023. Reference Link
[10] J. Kim, J. Kong, and J. Son, Conditional Variational Autoencoder with

Adversarial Learning for End-to-End Text-to-Speech. 2021.Reference
Link

[11] jaywalnut310 (2021) VITS-Demo [Source Code]. Github Link
[12] Jaehyeon Kim et al., Glow-TTS: A Generative Flow for Text-to-Speech

via Monotonic Alignment Search. 2020. Reference Link
[13] svc-develop-team (2023) So-VITS-SVC Repo [Source Code]. Github

Link
[14] Benjamin van Niekerk et al., A Comparison of Discrete and Soft Speech

Units for Improved Voice Conversion. 2021 Reference Link
[15] A. Blattmann et al., Stable Video Diffusion: Scaling Latent Video

Diffusion Models to Large Datasets. 2023. Reference Link
[16] Andreas Blattmann et al., Align your Latents: High-Resolution Video

Synthesis with Latent Diffusion Models. 2023. Reference Link
[17] Edward J. Hu et al., LoRA: Low-Rank Adaptation of Large Language

Models. 2021. Reference Link
[18] Engel, J., Agrawal, K. K., Chen, S., Gulrajani, I., Donahue, C., &

Roberts, A. GANSynth: Adversarial Neural Audio Synthesis. Interna-
tional Conference on Learning Representations. 2019. Reference Link

[19] Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y.,
... Scialom, T. Llama 2: Open Foundation and Fine-Tuned Chat Models.
2023. Reference Link

[20] [Kneeco]. I asked ai to make a Walter White bakery commercial. 2023.
Reference Link

[21] [Presidents Play]. US Presidents Play Minecraft. 2023. Reference Link
[22] Betker, James. Better speech synthesis through scaling. 2023. Reference

Link
[23] Betker, J. (2022). TorToiSe text-to-speech. GitHub Link

https://arxiv.org/pdf/2303.13439.pdf
https://github.com/Picsart-AI-Research/Text2Video-Zero
https://github.com/Picsart-AI-Research/Text2Video-Zero
https://arxiv.org/pdf/2112.10752.pdf
https://arxiv.org/pdf/2208.12242.pdf
http://arxiv.org/abs/2302.05543.
https://arxiv.org/pdf/2303.08774.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/pdf/2307.09288.pdf
https://arxiv.org/pdf/2106.06103.pdf
https://arxiv.org/pdf/2106.06103.pdf
https://jaywalnut310.github.io/vits-demo/index.html
https://arxiv.org/pdf/2005.11129.pdf
https://github.com/svc-develop-team/so-vits-svc
https://github.com/svc-develop-team/so-vits-svc
https://arxiv.org/abs/2111.02392
https://arxiv.org/abs/2311.15127
https://arxiv.org/pdf/2304.08818.pdf
https://arxiv.org/pdf/2106.09685.pdf
https://openreview.net/forum?id=H1xQVn09FX
http://arxiv.org/abs/2307.09288
https://www.youtube.com/watch?v=dgkZTHHom94
https://www.youtube.com/watch?v=qYF0jhwrzxA
https://arxiv.org/pdf/2305.07243.pdf
https://arxiv.org/pdf/2305.07243.pdf
https://github.com/neonbjb/tortoise-tts/blob/main/tortoise/api_fast.py

	Introduction/Overview
	Concept of the Project

	Related Work
	Inspiration
	Text-To-Video Generation
	Text-To-Image
	Image-To-Video

	Text-To-Speech Generation
	Text-To-Speech (TTS)
	Speech-To-Speech

	LLMs

	Data Collection
	Technical Approach
	TTS
	VITS
	So-VITS-SVC
	TorToiSeTTS

	LLM
	Stable Video Diffusion
	Pipeline

	Intermediate Results
	LLM
	Text2Speech
	TorToiSeTTS
	VITS
	So-VITS-SVC

	Text2Video
	Scene: Synthesis of Video & Audio

	Final Frames
	Prompt: make a commercial where Dwayne "the rock" Johnson sells orange juice
	Prompt: gordon ramsay going to the hospital after eating too many burgers
	Prompt: Italian mobsters start an advertisement for a pizza company

	Discussion and Further Work
	Further Work
	Extensions

	References

